
JS Contextual API Hacking Checklist

Introduction

3. Find Undocumented API Endpoints

2. Identify Hardcoded API Keys & Secrets

5. Extract WebSockets URLs from JavaScript

1. Extract API Endpoints from JavaScript Files

4. Analyze GraphQL Operations from JavaScript

Look for
Check for

Scan JS files for exposed API keys:

Inspect JavaScript files loaded in the browser (

APIs are the backbone of modern applications, but they often leak sensitive information through JavaScript files, misconfigurations, and weak security
measures. This checklist focuses on API hacking techniques, with special attention to JavaScript file analysis.

Search for fetch(), axios(), or
Look for API base URLs and hidden paths.
Use grep for automated extraction:

 queries and mutations in JS files.
 leaks:

Look for Firebase, Stripe, AWS, and third-party service keys.
Test API keys using Postman or curl to check access levels.

Identify WebSocket connections (or wss:// in JS files).
Test for unauthenticated data leaks by connecting directly.
Use to interact with WebSocket endpoints:

Analyze JavaScript code for endpoints not listed in public docs.
Identify /admin, /internal, /private routes.
Use API fuzzing tools like ffuf or wfuzz to discover hidden endpoints.

).

Test for authorization bypass using direct GraphQL operations found in JS files.

GraphQL
introspection

{

}

__schema {
types {
name
fields { name }

}
}

grep -Eo 'https?://[^"']+' *.js

ws://

wscat

wscat -c ws://target.com/socket

grep -E 'API_KEY|token|Bearer' *.js

DevTools > Sources
XMLHttpRequest calls.

jsmon.sh

Conclusion
APIs often expose sensitive data due to weak security configurations. Hackers can leverage JavaScript files to extract valuable API information and test for
vulnerabilities. Always ensure secure API design and implement strong authentication, rate limiting, and access controls.

10. Check for CORS Misconfigurations

9. Test for Server-Side Request Forgery (SSRF)

7. Test for Broken Authentication & Authorization

8. Exploit Rate-Limiting & Brute-Force Vulnerabilities

6. Enumerate API Parameters & Manipulate Requests

Identify API endpoints fetching external URLs (
Try SSRF payloads:

,

Check for responses leaking internal IPs or AWS metadata.

,

Analyze the Access-Control-Allow-Origin response headers.
Test if wildcard (*) allows cross-origin requests.
Try executing unauthorized API calls from a different domain.

Check if APIs present in JS file accept unauthenticated requests.
Try using a guest token or JWT tampering.
Test different user roles (admin, user, guest) to escalate privileges.

Check if APIs enforce rate limits on login, OTP, and sensitive actions.
Use Burp Intruder or ffuf to test for brute-force vulnerabilities.
Modify request headers (X-Forwarded-For) to bypass rate limits.

).

Use Burp Suite’s Param Miner to find hidden parameters.
Modify request parameters to check for IDOR (Insecure Direct Object References).
Test with various payloads: null, true, false, ../, etc.

url= file= redirect=

https://target.com/api?url=http://169.254.169.254/latest/meta-data/

Stay Secure & Happy Hacking!

jsmon.sh

